

Exaton Ni56 (GTAW)

Exaton Ni56 is a low carbon nickel-chrome-molybdenum alloy of type alloy C-276. It is a versatile alloy with excellent wet corrosion resistance in oxidizing and especially in reducing media. However, in oxidizing chloride containing environments alloy UNS N06022 (2.4602) is preferred where Exaton Ni54 is a better matching welding consumable. Applications for Exaton Ni56 are found in aggressively corrosive media such as chemical processing plants, pollution control, pulp and paper production, waste treatment and for the recovery of sour natural gas. Exaton Ni56 is used for joining alloy UNS N10276 (2.4819) and other nickel-chrome-molybdenum alloys. Exaton Ni56 is used for joining and overlay welding with TIG. It can also be used for dissimilar metal joining of nickel alloys, stainless steels and low-alloy steels. Applications for Exaton Ni56 are found in cryogenics, components in pulp and paper plants such as bleaching vessels, flue gas scrubber systems, components in sour-gas service, sulphuric acid coolers, chlorine gas, hypochlorite and chlorine dioxide atmosphere. Exaton Ni56 is also used in combustion-resistant components for high pressure oxygen service.

Specifications				
Classifications	SFA/AWS A5.14 : ERNiCrMo-4 EN ISO 18274 : S Ni 6276 (NiCr15Mo16Fe6W4)			
	Werkstoffnummer : ~2.4819			
Approvals	ABS : ER NiCrMo-4			

Approvals are based on factory location. Please contact ESAB for more information.

Alloy Type Alloyed	nickel (Ni + 16 % Cr + 16% Mo + 3.7% W + 5.9 % Fe + Low C)
--------------------	--

Typical Tensile Properties					
Condition	Yield Strength	Tensile Strength	Elongation		
As Welded	540 MPa	780 MPa	44 %		

Typical Charpy V-Notch Properties					
Condition	Testing Temperature	Impact Value			
As Welded	20 °C	240 J			
As Welded	-110 °C	150 J			
As Welded	-196 °C	200 J			

Typical Wire Composition %									
C	Mn	Si	S	Р	Ni	Cr	Мо	V	Cu
0.007	0.5	0.02	0.002	0.005	58	16	16	0.03	0.02

Typical Wire Composition %					
Co	W	Fe			
0.02	3.7	5.8			

Typical Weld Metal Analysis %									
С	Mn	Si	S	Р	Ni	Cr	Мо	V	Cu
0.01	0.5	0.04	0.001	0.006	58	16	16	0.02	0.05

Typical Weld Metal Analysis %					
Co	W	Fe			
0.02	3.7	6			